
Copyright© 2014 KRvW Associates, LLCCopyright© 2014 KRvW Associates, LLC

Mobile Apps - Hands On
SecAppDev 2014
Ken van Wyk, @KRvW
!
Leuven, Belgium
10-14 February 2014

Copyright© 2014 KRvW Associates, LLC

Clear up some misconceptions

Apple’s iOS has been a
huge success for Apple
– Together with Android, they

have re-defined mobile
telephony

Apple has made great
advances in security
– They are still far from really

good
– Not even sure if they’re

pretty good
!2

Copyright© 2014 KRvW Associates, LLC

Hardware encryption

Each iOS device (as of
3g) has hardware crypto
module
–Unique AES-256 key for

every iOS device
–Sensitive data hardware

encrypted
Sounds brilliant, right?
–Well...

!3

Copyright© 2014 KRvW Associates, LLC

Encryption on Android

Android 2.2 has software
based encryption
–Standard Java classes
–Bouncy Castle works too

Android 3.0 and 4.0 include
hardware based encryption
–But our apps can’t rely on this
!

See http://www.unwesen.de/
2011/06/12/encryption-on-
android-bouncycastle/

!4

Copyright© 2014 KRvW Associates, LLC

iOS crypto keys

GID key - Group ID key
UID key - Unique per dev
Dkey - Default file key
EMF! - Encrypts entire
file system and HFS
journal
Class keys - One per
protection class
–Some derived from UID +

Passcode

!5

Copyright© 2014 KRvW Associates, LLC

iOS NAND (SSD) mapping

Block 0 - Low level boot
loader
Block 1 - Effaceable storage
–Locker for crypto keys,

including Dkey and EMF!
Blocks 2-7 - NVRAM
parameters
Blocks 8-15 - Firmware
Blocks 8-(N-15) - File system
Blocks (N-15)-N - Last 15
blocks reserved by Apple

!6

Copyright© 2014 KRvW Associates, LLC

WHAT?!

Yes, these keys are stored
in plaintext
No, you shouldn’t be able
to access them
–But in reality...

!7

Copyright© 2014 KRvW Associates, LLC

Jailbreaks

Apple’s protection architecture
is based on a massive digital
signature hierarchy
– Starting from bootloader
– Through app loader

DFU mode allows USB vector
for boot loader
– Jailbreaks exploit software

weaknesses in boot loader protocol
– As of today, works on 6.1 to all

except A5-based systems
– No ATV3, I5, etc.

!8

Copyright© 2014 KRvW Associates, LLC

Keychains

Keychain API provided
for storage of small
amounts of sensitive data
–Login credentials,

passwords, etc.
–Encrypted using hardware

AES
Also sounds wonderful
–Wait for it...

!9

Copyright© 2014 KRvW Associates, LLC

Built-in file protection limitations

Pros
– Easy to use, with key

management done by iOS
– Powerful functionality
– Always available
– Zero performance hit

Cons
– For Complete, crypto key is

UDID + Passcode
l4 digit PIN problem

Your verdict?
!10

Copyright© 2014 KRvW Associates, LLC

Built-in file protection classes

iOS (since 4) supports file
protection class
–NSFileProtectionComplete
–NSFileProtectionCompleteU

nlessOpen
–NSFileProtectionCompleteU

ntilFirstUserAuthentication
–NSFileProtectionNone

!11

���12

Copyright© 2014 KRvW Associates, LLC

Biggest issue: lost/stolen device

Anyone with physical access
to your device can get to a
wealth of data
–PIN is not effective
–App data
–Keychains
–Properties

Disk encryption helps, but we
can’t count on users using it
See forensics results

!13

Copyright© 2014 KRvW Associates, LLC

Second biggest: insecure comms

Without additional
protection, mobile devices
are susceptible to the
“coffee shop attack”
–Anyone on an open WiFi

can eavesdrop on your data
–No different than any other

WiFi device really
Your apps MUST protect
your users’ data in transit

!14

Copyright© 2014 KRvW Associates, LLC

Let’s consider the basics

We’ll cover these (from
the mobile top 10)
–Protecting secrets

lAt rest
l In transit

– Input/output validation
–Authentication
–Session management
–Access control
–Privacy concerns

!15

Copyright© 2014 KRvW Associates, LLC

Attack vector: lost/stolen device

Anyone with physical
access to your device can
get to a wealth of data
–PIN is not effective
–App data
–Keychains
–Properties
See forensics studies
Your app must protect
users’ local data storage

!16

���17

M1- Insecure Data Storage

• Sensitive data left unprotected

• Applies to locally stored data +
cloud synced

• Generally a result of:
• Not encrypting data
• Caching data not intended for long-term

storage
• Weak or global permissions
• Not leveraging platform best-practices

Impact

• Confidentiality
of data lost

• Credentials
disclosed

• Privacy
violations

• Non-
compliance

���18

M1- Insecure Data Storage

���19

M1- Insecure Data Storage  
Prevention Tips

• Store ONLY what is absolutely
required

• Never use public storage areas (ie-
SD card)

• Leverage secure containers and
platform provided file encryption
APIs

• Do not grant files world readable or
world writeable permissions

Control
#

Description

1.1-1.14 Identify and protect sensitive
data on the mobile device

2.1, 2.2,
2.5

Handle password credentials
securely on the device

Copyright© 2014 KRvW Associates, LLC

SQLlite example

Let’s look at a database
app that stores sensitive
data into a SQLite db
–We’ll recover it trivially by

looking at the unencrypted
database file

!20

Copyright© 2014 KRvW Associates, LLC

Protecting secrets at rest

Encryption is the answer,
but it’s not quite so simple
–Where did you put that key?
–Surely you didn’t hard code it

into your app
–Surely you’re not counting on

the user to generate and
remember a strong key
!

Key management is a non-
trivially solved problem

!21

Copyright© 2014 KRvW Associates, LLC

How bad is it?

It’s tough to get right
–Key management is

everything
We’ve seen many
examples of failures
–Citi and others
Consider lost/stolen device
as worst case
–Would you be confident of

your app/data in hands of
biggest competitor?

!22

Copyright© 2014 KRvW Associates, LLC

Static analysis of an app

Explore folders
– ./Documents
– ./Library/Caches/*
– ./Library/Cookies
– ./Library/Preferences
App bundle
–Hexdump of binary
–plist files
What else?

!23

Copyright© 2014 KRvW Associates, LLC

Examples

Airline app
–Stores frequent flyer data in

plaintext XML file
Healthcare app
–Stores patient data in plist

file
lBut it’s base64 encoded for

protection...

!24

Copyright© 2014 KRvW Associates, LLC

Tools to use

Mac tools
–Finder
– iExplorer
–hexdump
–strings
–otool
–otx (otx.osxninja.com)
–class-dump

(iphone.freecoder.org/
classdump_en.html)

– Emacs (editor)
Xcode additional tools
– Clang (build and

analyze)
lFinds memory leaks and

others

!25

Copyright© 2014 KRvW Associates, LLC

What to examine?

See for yourself
–There is no shortage of

sloppy applications in the
app stores

–Start with some apps that
you know store login
credentials

!26

Copyright© 2014 KRvW Associates, LLC

Let’s go further

Consider jailbreaking to
further analyze things
–Get outside of app sandbox
–All OS files exposed

lKeylog, SMS, email

–Tethered vs. untethered
Tools and notes
–Works up to 7.0.x on iPhone

5S
lEvasi0n and others
lPlus Cydia, of course…

!27

Copyright© 2014 KRvW Associates, LLC

Further still

Disassembly of binary
–Must get around app store

encryption
lNot so hard

– IDAPro is your friend

!28

Copyright© 2014 KRvW Associates, LLCCopyright© 2014 KRvW Associates, LLCCopyright© 2013 KRvW Associates, LLC

Resources

Hacking and Securing iOS Applications, Jonathan
Zdziarski, O’Reilly, 2012
Evasi0n, popular jailbreaking tool, http://
www.evad3rs.com/

!29

Copyright© 2014 KRvW Associates, LLC

Attack vector: coffee shop attack

Exposing secrets through
non-secure connections is
rampant
– Firesheep description

Most likely attack targets
– Authentication credentials
– Session tokens
– Sensitive user data

At a bare minimum, your app
needs to be able to withstand
a coffee shop attack

!30

���31

M3- Insufficient Transport Layer Protection

• Complete lack of encryption for
transmitted data

• Yes, this unfortunately happens often

• Weakly encrypted data in transit

• Strong encryption, but ignoring
security warnings

• Ignoring certificate validation errors
• Falling back to plain text after failures

Impact

• Man-in-the-
middle attacks

• Tampering w/
data in transit

• Confidentiality
of data lost

���32

M3- Insufficient Transport Layer Protection 
Prevention Tips

• Ensure that all sensitive data
leaving the device is
encrypted

• This includes data over carrier
networks, WiFi, and even NFC

• When security exceptions are
thrown, it’s generally for a
reason…DO NOT ignore them!

Control
#

Description

3.1.3.6 Ensure sensitive data is
protected in transit

Copyright© 2014 KRvW Associates, LLC

Exercise - coffee shop attack

This one is trivial, but
let’s take a look
In this iGoat exercise, the
user’s credentials are sent
plaintext
–Simple web server running

on Mac responds
– If this were on a public

WiFi, a network sniffer
would be painless to launch

!33

Copyright© 2014 KRvW Associates, LLC

Protecting users’ secrets in transit

Always consider the
coffee shop attack as
lowest common
denominator
We place a lot of faith in
SSL
–But then, it’s been subjected

to scrutiny for years

!34

Copyright© 2014 KRvW Associates, LLC

Most common SSL mistake

We’ve all heard of CAs
being attacked
– That’s all important, but...
– (Certificate pinning can help.)

Failing to properly verify
CA signature chain
– Biggest SSL problem by far
– Study showed 1/3 of Android

apps fell to this
Cannot happen by accident

!35

Copyright© 2014 KRvW Associates, LLC

How bad is it?

Neglecting SSL on
network comms is
common
–Consider the exposures

lLogin credentials
lSession credentials
lSensitive user data

Will your app withstand a
concerted coffee shop
attacker?

!36

Copyright© 2014 KRvW Associates, LLC

Attack vector: web app weakness

Remember, modern
mobile devices share a lot
of weaknesses with web
applications
–Many shared technologies
–A smart phone is sort of like

a mobile web browser
lOnly worse in some regards

!37

Copyright© 2014 KRvW Associates, LLC

Input and output validation

Problems abound
–Data must be treated as

dangerous until proven safe
–No matter where it comes

from
Examples
–Data injection
–Cross-site scripting
!

Where do you think input
validation should occur?

!38

Copyright© 2014 KRvW Associates, LLC

SQL Injection

Most common
injection attack
–Attacker taints input data

with SQL statement
–Application constructs

SQL query via string
concatenation

–SQL passes to SQL
interpreter and runs on
server

Consider the following
input to an HTML form
– Form field fills in a

variable called
“CreditCardNum”

– Attacker enters
l ‘
l ‘ --
l ‘ or 1=1 --

– What happens next?

!39

Copyright© 2014 KRvW Associates, LLC

SQL injection exercise - client side

In this one, a local SQL
db contains some
restricted content
–Attacker can use “SQLi” to

view restricted info
Not all SQLi weaknesses
are on the server side!
!

Question: Would db
encryption help?

!40

���41

M5- Poor Authorization and Authentication

• Part mobile, part architecture

• Some apps rely solely on
immutable, potentially
compromised values (IMEI, IMSI,
UUID)

• Hardware identifiers persist across
data wipes and factory resets

• Adding contextual information is
useful, but not foolproof

Impact

• Privilege
escalation

• Unauthorized
access

���42

M5- Poor Authorization and Authentication

���43

M5- Poor Authorization and Authentication 
Prevention Tips

• Contextual info can enhance
things, but only as part of a
multi-factor implementation

• Out-of-band doesn’t work
when it’s all the same device

• Never use device ID or
subscriber ID as sole
authenticator

Control
#

Description

4.1-4.6 Implement user
authentication/authorization
and session management
correctly8.4 Authenticate all API calls to
paid resources

���44

M6- Improper Session Handling

• Mobile app sessions are generally
MUCH longer

• Why? Convenience and usability

• Apps maintain sessions via
• HTTP cookies
• OAuth tokens
• SSO authentication services

• Bad idea= using a device identifier
as a session token

Impact

• Privilege
escalation

• Unauthorized
access

• Circumvent
licensing and
payments

���45

M6- Improper Session Handling 
Prevention Tips

• Don’t be afraid to make users
re-authenticate every so often

• Ensure that tokens can be
revoked quickly in the event
of a lost/stolen device

• Utilize high entropy, tested
token generation resources

Control
#

Description

1.13 Use non-persistent identifiers

4.1-4.6 Implement user
authentication/authorization
and session management
correctly

���46

M4- Client Side Injection

Garden Variety
XSS….

With access to:

���47

M4- Client Side Injection 
Prevention Tips

• Sanitize or escape untrusted data
before rendering or executing it

• Use prepared statements for
database calls…concatenation is
still bad, and always will be bad

• Minimize the sensitive native
capabilities tied to hybrid web
functionality

Control
#

Description

6.3 Pay particular attention to
validating all data received
from and sent to non-trusted
third party apps before

10.1-10.5 Carefully check any runtime
interpretation of code for
errors

���48

M7- Security Decisions Via Untrusted Inputs

• Can be leveraged to bypass
permissions and security models

• Similar but different depending on
platform

• iOS- Abusing URL Schemes
• Android- Abusing Intents

• Several attack vectors
• Malicious apps
• Client side injection

Impact

• Consuming
paid resources

• Data
exfiltration

• Privilege
escalation

���49

M7- Security Decisions Via Untrusted Inputs

Skype iOS URL Scheme Handling Issue

!

!

!

!

!

!

!

• http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/

���50

M7- Security Decisions Via Untrusted Inputs  
Prevention Tips

• Check caller’s permissions at
input boundaries

• Prompt the user for additional
authorization before allowing

• Where permission checks
cannot be performed, ensure
additional steps required to
launch sensitive actions

Control
#

Description

10.2 Run interpreters at minimal
privilege levels

���51

M8- Side Channel Data Leakage

• Mix of not disabling platform features and
programmatic flaws

• Sensitive data ends up in unintended places
• Web caches
• Keystroke logging
• Screenshots (ie- iOS backgrounding)
• Logs (system, crash)
• Temp directories

• Understand what 3rd party libraries in your
apps are doing with user data
(ie- ad networks, analytics)

Impact

• Data retained
indefinitely

• Privacy
violations

���52

M8- Side Channel Data Leakage

Logging

Screenshots

���53

M8- Side Channel Data Leakage  
Prevention Tips

• Never log credentials, PII, or other sensitive data to
system logs

• Remove sensitive data before screenshots are taken,
disable keystroke logging per field, and utilize anti-
caching directives for web content

• Debug your apps before releasing them to observe
files created, written to, or modified in any way

• Carefully review any third party libraries you
introduce and the data they consume

• Test your applications across as many platform
versions as possible

Control
#

Description

7.3 Check whether you are
collecting PII, it may not
always be obvious

7.4 Audit communication
mechanisms to check for
unintended leaks (e.g. image
metadata)

���54

M10- Sensitive Information Disclosure

• We differentiate by stored (M1) vs.
embedded/hardcoded (M10)

• Apps can be reverse engineered
with relative ease

• Code obfuscation raises the bar, but
doesn’t eliminate the risk

• Commonly found “treasures”:
• API keys
• Passwords
• Sensitive business logic

Impact

• Credentials
disclosed

• Intellectual
property
exposed

���55

M10- Sensitive Information Disclosure

���56

M10- Sensitive Information Disclosure  
Prevention Tips

• Private API keys are called that
for a reason…keep them off of
the client

• Keep proprietary and sensitive
business logic on the server

• Almost never a legitimate reason
to hardcode a password (if there
is, you have other problems)

Control
#

Description

2.10 Do not store any passwords
or secrets in the application
binary

Copyright© 2014 KRvW Associates, LLC

Kenneth R. van Wyk
KRvW Associates, LLC

!

Ken@KRvW.com
http://www.KRvW.com

